Odd One Out

1.	1 14	2 5	$\frac{6}{14}$	$\frac{4}{14}$
2.	3 12	$\frac{1}{4}$	4 15	2 8
3.	30 33	<u>2</u> 5	20 50	$\frac{4}{10}$
4.	$5\frac{1}{9}$	$9\frac{5}{7}$	3	$4\frac{15}{19}$

$$\frac{3}{8} + \frac{4}{8}$$

Adding and subtracting fractions with the same denominator is easy. You simply add or subtract the **numerators**.

$$\frac{3}{8} + \frac{4}{8}$$

$$=\frac{7}{8}$$

$$\frac{7}{12} + \frac{4}{12}$$

Adding and subtracting fractions with the same denominator is easy. You simply add or subtract the **numerators**.

$$\frac{7}{12} + \frac{4}{12}$$

$$=\frac{11}{12}$$

$$\frac{3}{8} + \frac{1}{4} = \frac{5}{8}$$

1 4

Equivalent

8 12

+

 $\frac{3}{12}$

Equivalent
Multiples of
3 and 4

)

3 4

6 8

9 12

12 16

15 20

12 is the LCM

_

 $\frac{11}{12}$

5 Equivalent

40

40 is the LCM